Indian Agriculture
Challenges and Prospects
Disclaimer

This document has been prepared by International Market Assessment India Private Limited. It provides an analysis of the key challenges facing the agricultural sector in India and IMA’s assessment of the sector’s prospects in the years ahead.

This report is not intended for decision making purposes. Whilst the information contained in the following pages is accurate to the best of our knowledge and belief, IMA India cannot assume any responsibility for the outcome of actions initiated, or decisions taken, as a result of this document. Moreover, IMA’s assessment is based on conditions as they existed at the time of writing this report, and these may no longer be applicable consequent upon changes in political, economic or trade conditions within the Republic of India or elsewhere.

The contents of this report are the intellectual property of IMA India and are copyright protected. Unauthorised copying, reproduction or distribution of the information contained in this report would amount to an infringement of law and would invite applicable penalties, as per Indian laws.
Contents

1. About IMA India 4
2. The Scenario Planning approach for building strategy: an overview 7
3. Indian Agriculture: challenges and prospects 12
4. Summary and drawings 40
I. About IMA India
What IMA Does...

- **Undertakes in-depth market studies and opportunity assessments** for individual companies: leveraging a full range of business and market research capabilities.

- **Provides ongoing market intelligence and risk assessments** to country managers; offers research-based interpretations and top-level forecasts of the operating environment in India: economy, politics, key sectors, emerging business issues, etc.

- **Provides closed-door discussion platforms** that enable focused and high quality intellectual exchanges between senior executives on current and strategic business issues.
Four Business Streams

• **Research and Advisory Services**
 – Proprietary studies for individual clients across issues and sectors
 – Leveraging a unique methodology comprising extensive desk analysis complemented by expert insights obtained from internal and external domain specialists

• **Peer Group Forums**
 – Membership-based executive briefing and research services: a platform for obtaining country intelligence and exposure to authoritative minds; access to top-level India research
 – An extensive corporate network: a forum for sharing experiences and learning from peers and pioneers

• **Conferences and Business Meetings**
 – Closed-door Roundtables for senior executives
 – Driven by research-based agendas and intense interaction

• **CFO Connect**: first-of-its-kind thought leadership journal for CFOs
II. The Scenario Planning approach for building strategy: an overview
Understanding the drivers of agriculture

- The performance of the agriculture sector depends on several drivers, which, rather than impacting the sector in isolation, interact with each other and also depend on sub-drivers, consequently strengthening or weakening specific trends.

- The key drivers that directly impact output can be grouped into 6 categories:
 - Technology (farming and crop technology)
 - Government policy (availability of credit, crop specific programmes, etc)
 - Cropping pattern (which depends on profitability, awareness, etc)
 - Environmental factors (water availability, soil degradation, climate change, etc)
 - Market forces (market openness, pricing, transparency, integration with downstream sectors)
 - Global factors (supply-demand, trade norms and restrictions, etc)

Source: IMA research and analysis
But they cannot be examined in isolation...

One factor alone – cropping patterns – is a function of several inter-related drivers and sub-drivers

Source: IMA research and analysis
Indian agriculture is not ‘one’ concept

- The dynamics for each crop are different in each state – yields, acreage, farmer awareness and psyche, cost structures, Government infrastructure
 - Upstream issues vary substantially – labour availability, credit, soil fertility and agronomy, irrigation, input and technology availability, training
 - Downstream markets are even more varied across states and crops – market openness, procurement chains, processing infrastructure, food retail, etc

Hence, there is a need for a granular assessment (by crop, by state/region, by issue) if a business or investment decision is at stake

Source: IMA research and analysis
‘Scenario planning’ is therefore, a useful tool

An evaluation of all driving forces yields two dominant themes that will guide the future development of Indian agriculture – **Agricultural policy** and **Implementation of technology**

A quadrant matrix of these two overarching issues provides **four possible scenarios**

- **Scenario I: The Tiger Uncaged**
 - Pro-growth, market-orientation
 - Effective implementation, hand holding for farmers

- **Scenario II: Nehruvian Agronomics**
 - Pro-equity, interventionist orientation
 - Overall priorities are growth and employment, with high focus on agro-based industries as one of the means to achieve this

- **Scenario III: Sleeping Giant**
 - Effective implementation, hand holding for farmers
 - A market economy with excessive regulation and intervention (both institutional and arbitrary); political leadership is strong and enlightened

- **Scenario IV: Crony Capitalism**
 - Business as usual (BAU)
 - Ineffective implementation, farmers left to their own devices

A market economy with excessive regulation and intervention (both institutional and arbitrary); political leadership is strong and enlightened

While growth is a key priority, political dynamics and immature institutions prevent the emergence of a clear cut approach on complex issues such as agriculture

Each driver and its impact on the business decision under consideration is subsequently examined for each scenario

Scenario-based forecast of each driver is woven into a complete market picture, based on which the business decision is evaluated

Source: IMA research and analysis
III. Indian Agriculture: challenges and prospects
The overriding challenge is ‘sustainable and profitable growth’ in agriculture...
But that’s where the generalisation ends

There is a complex web of inter-related causal relationships* which impact growth – and must be evaluated

Sustainable growth

For the sake of convenience, the issue of **crop yields** has been taken as a starting point for this analysis…

* The schematic diagram shown here is largely illustrative. Sub-drivers of each high level driver can be further delineated to demonstrate the complexity and inter-relatedness.
1. Crops Yields: Patchy improvement over the years...

- Mainstream food crops have seen a plateau-ing of yields after the effects of the Green Revolution subsided in the late 80s.
- However, there are important exceptions – such as cotton, which has benefited from the introduction of Bt Cotton.
- Across the board, there are significant regional variations in yields.

Source: Agriculture Ministry Statistics; Economic Survey 2007-08; IMA analysis
...and still below world standards

<table>
<thead>
<tr>
<th>Comparison of yields in selected commodities (Metric tonnes/ hectare)</th>
<th>Rice/paddy</th>
<th>Wheat</th>
<th>Maize</th>
<th>Cotton</th>
<th>Major Oilseeds</th>
</tr>
</thead>
<tbody>
<tr>
<td>Egypt</td>
<td>9.8</td>
<td>UK</td>
<td>7.7</td>
<td>USA</td>
<td>9.1</td>
</tr>
<tr>
<td>USA</td>
<td>7.8</td>
<td>France</td>
<td>7.5</td>
<td>France</td>
<td>7.5</td>
</tr>
<tr>
<td>Korea</td>
<td>6.7</td>
<td>China</td>
<td>4.2</td>
<td>Germany</td>
<td>6.6</td>
</tr>
<tr>
<td>Japan</td>
<td>6.4</td>
<td>World</td>
<td>2.8</td>
<td>China</td>
<td>4.9</td>
</tr>
<tr>
<td>World</td>
<td>3.9</td>
<td></td>
<td></td>
<td>World</td>
<td>3.3</td>
</tr>
<tr>
<td>India</td>
<td>2.9</td>
<td>Pakistan</td>
<td>2.3</td>
<td>Philippines</td>
<td>2.1</td>
</tr>
<tr>
<td>Thailand</td>
<td>2.6</td>
<td>Iran</td>
<td>2.0</td>
<td>India</td>
<td>1.1</td>
</tr>
<tr>
<td>Myanmar</td>
<td>2.4</td>
<td>Australia</td>
<td>1.6</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- Despite 30 years of intense Government efforts, India’s yields for most major crops are still below global averages, and far below the highest standards
- Equally, this indicates the potential untapped opportunity – for GM crops, better farming practices, improved input usage, re-balancing of labour utilisation, etc

Source: UN Statistics Division
There is plenty of scope for improvement

- **Even with current technology**, yields can raised significantly: by optimising farm practices – input usage, sowing techniques, timing, etc
- In other studies (e.g. paddy cultivation in UP), it was found that the **best farmer’s overall profitability is 77% higher than the average** farmer’s profitability – purely because of better farming techniques

Source: Planning Commission; Steering Committee on Agriculture; TN Agricultural University; Centad, Ramesh Chand, Joshi; IMA analysis
But much else can and needs to be done

Regression-based analysis of field data indicates that, when measured on an individual basis, up to 93% yield variations can be ‘explained’ (accounted for) by fertiliser usage; 92% can be accounted for by the area under high yielding varieties seeds; 42% can be accounted for by usage of pesticides and 34% by greater irrigation.

Greater fertiliser usage and area under high yielding varieties can greatly boost yields; greater irrigation as well as pesticide usage can help too.

Source: Agricultural Situation in India, Directorate of Economics and Statistics
2. Better seeds can raise yields by 40%

- An effective means to raise yields is through better seeds – seeds have an ~40% impact on yield variations.
- Development of dramatically better seeds has been almost non-existent in the last decade – hence, greater focus on increasing adoption rates of existing seed technologies.
- However, the key constraint is production/availability of certified seeds: as compared to an ideal of 1:40, average multiplication ratios (for certified good quality seeds) are 1:17 to 1:23.
- Meanwhile, GM seeds have fared well: bt cotton has seen rapid adoption across states since its introduction in 2002; the launch of Bollgard II in 2006 has given a new push despite higher seed prices.
- Most states are approaching 80-90% rates of adoption – this should reach 100% in the next 2-3 years.
- The next in line is Bt Brinjal...

Key risks include price controls (e.g. Andhra Pradesh); regulatory issues around GM technology in food crops; and activism.
3. Balanced fertiliser usage is equally critical

- Unbalanced fertiliser usage is one of the biggest reasons for stagnant yield and depleting soil fertility.
- Fertiliser usage continues to be skewed due to irrational subsidy structure that favours Nitrogenous fertilisers over others.
- Poor fund management by the Government often leads to acute shortage as fertiliser companies complain of delayed payments.
- The rising subsidy bill on this account has reached worrisome levels – by issuing off-budget fertiliser bonds, the Government is only postponing the inevitable.

Lack of political will has been the single most important constraint so far – with a strong Government now in office, there is reason to hope for gradual improvement.

The average NPK ratio in the past two decades has been 7:3:1, against the recommended 4:2:1.

Source: Agricultural Situation in India, Directorate of Economics and Statistics; Planning Commission Sub-group on Fertilisers.
4. Irrigation can raise incomes

Rice, wheat and sugarcane have received focus for irrigation provision – largely the outcome of the government’s paranoia about achieving ‘self-sufficiency in food’; other crops have been neglected, despite the fact that irrigation can generate enormous economic returns for them.

Source: Agricultural Situation in India; Directorate of Economics and Statistics, Ministry of Agriculture; IMA analysis
But irrigation progress has been slow

- In the latter half of the 90s, the Government’s investment efficiency (in terms of completing irrigation targets and utilising potential) dipped to below 50%; in the 2000s, efficiency improved marginally.
- Overall, efficiency in minor irrigation has been higher than in major and medium irrigation; hence, minor irrigation is receiving increasing attention from policy planners.

Source: Ministry of Agriculture; World Bank; IMA analysis
Credit and land holdings are critical from an economic perspective

Overall profitability per acre rises with size of land holdings, but access to credit can compensate for this and raise profitability by up to 50%; with access to credit, farmers with smaller land holdings were found to be more profitable than those with larger farms.

<table>
<thead>
<tr>
<th>Land size (acre)</th>
<th>Profit/acre (farmers without credit)</th>
<th>Profit/acre (farmers with credit)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Non food</td>
<td>Food</td>
</tr>
<tr>
<td>< 1</td>
<td>42,500</td>
<td>4,000</td>
</tr>
<tr>
<td>1-2</td>
<td>60,000</td>
<td>4,500</td>
</tr>
<tr>
<td>2-3</td>
<td>62,000</td>
<td>5,000</td>
</tr>
<tr>
<td>>3</td>
<td>65,000</td>
<td>5,000</td>
</tr>
<tr>
<td>Avg</td>
<td>57,375</td>
<td>4,625</td>
</tr>
</tbody>
</table>

Source: Indian Journal of Agricultural Economics, December 2006; data pertains to West Bengal
Fortunately, credit provision is improving

- Two important developments in credit are the consistent increase in penetration of organised lending (institutional finance) and the penetration of the Kissan Credit Card
- Meanwhile, the success of micro-finance initiatives and joint industry financing programmes, will be critical to watch for

Source: Ministry of Agriculture; RBI
Improved credit: an important achievement

- Trend changes witnessed
 - Commercial banks are participating in a bigger way
 - After initial hiccups, agri-insurance appears to be improving as well
- On the horizon
 - The Multi Application Smart Card will create a billion credit cards in circulation
 - Tradeable deficits for directed bank lending will deepen commercial bank participation

Source: ICRIER; Ministry of Agriculture; RBI; IMA analysis; RRB: Rural Regional Banks
6. But land fragmentation is difficult to reverse

- The percentage of farmers with marginal holdings (< 1 ha) has increased from 61.6% to 62.9%, while that of large farmers (> 5 ha) has fallen from 4.9% to 4.3% between 1995 and 2000.
- The reasons for this are intrinsic to farming societies – fathers’ land moves to children, who tend to divide holdings amongst themselves.
- To reverse this trend, the Government will need to implement far reaching changes in land laws to encourage consolidation or corporatisation – highly unlikely, given the political ramifications.

Source: National Agricultural Census; Department of Agriculture; NIC; IMA analysis
7. Profitability is still poor, for many reasons...

- The state of the two main food crops in India demonstrates the farmer’s poor profitability: for rice, MSP doesn’t even cover cost in states like Haryana, Tamil Nadu, West Bengal and Madhya Pradesh; wheat is somewhat better, but still delivers only marginal profit in states like UP.
- The reasons are related to sharp increases in farming costs and inadequate linkages with open markets where prices are typically higher.
8. ...one of these is rising labour costs

- A key reason for rising costs is the increase in wage rates – a direct fall out of falling farm labour availability
- This trend will continue due to Government efforts (e.g. NREGA) and other measures to reduce employment dependence on farming

9. ...another is sub-optimal cropping systems

<table>
<thead>
<tr>
<th>Location, State</th>
<th>Less remunerative system</th>
<th>Net return (Rs/ha)</th>
<th>High profitable system</th>
<th>Net return (Rs/ha)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kahikuchi, Assam</td>
<td>Rice-wheat</td>
<td>16,749</td>
<td>Rice-toria</td>
<td>22,333</td>
</tr>
<tr>
<td>Chhattisgarh</td>
<td>Rice-wheat</td>
<td>30,291</td>
<td>Rice-potato</td>
<td>67,496</td>
</tr>
<tr>
<td>Ambala, Haryana</td>
<td>Soyabean-wheat</td>
<td>29,851</td>
<td>Rice-wheat</td>
<td>36,399</td>
</tr>
<tr>
<td></td>
<td>Sorghum-wheat</td>
<td>13,602</td>
<td>Maize-wheat</td>
<td>22,188</td>
</tr>
<tr>
<td>Nasik, Maharashtra</td>
<td>Rice-wheat</td>
<td>33,378</td>
<td>Rice-groundnut</td>
<td>46,504</td>
</tr>
<tr>
<td>Wardha, Maharashtra</td>
<td>Soyabean-wheat</td>
<td>25,008</td>
<td>Soyabean-gram</td>
<td>32,327</td>
</tr>
<tr>
<td>Faridkot, Punjab</td>
<td>Rice-wheat</td>
<td>50,388</td>
<td>Rice-mustard</td>
<td>66,887</td>
</tr>
<tr>
<td>Ludhiana, Punjab</td>
<td>Rice-mustard</td>
<td>52,537</td>
<td>Rice-wheat</td>
<td>63,352</td>
</tr>
</tbody>
</table>

If farmers shift away from the decades-old rice-wheat cropping pattern, they can raise returns significantly – this realisation is now driving shifts in cropping patterns.

Source: Shukla & Shukla, Scope and Limitations of Crop Diversification in Indian Agriculture
Cropping patterns are improving

<table>
<thead>
<tr>
<th></th>
<th>Change in acreage between 2000 and 2007 (‘000 ha)</th>
<th>Total acreage change</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Rice</td>
<td>Wheat</td>
</tr>
<tr>
<td>AP</td>
<td>-243</td>
<td>-2.0</td>
</tr>
<tr>
<td>Karnataka</td>
<td>-138.4</td>
<td>-21.0</td>
</tr>
<tr>
<td>Tamil Nadu</td>
<td>17.99</td>
<td>0</td>
</tr>
<tr>
<td>Kerala</td>
<td>-80.5</td>
<td>0</td>
</tr>
<tr>
<td>South – change</td>
<td>-443.9</td>
<td>-23.0</td>
</tr>
<tr>
<td>% change</td>
<td>-5.4%</td>
<td>-8.2%</td>
</tr>
<tr>
<td>Assam</td>
<td>-375.3</td>
<td>-10.3</td>
</tr>
<tr>
<td>Bihar</td>
<td>-261.3</td>
<td>269.2</td>
</tr>
<tr>
<td>Chhattisgarh</td>
<td>-39.6</td>
<td>63.2</td>
</tr>
<tr>
<td>Jharkhand</td>
<td>153</td>
<td>-4.0</td>
</tr>
<tr>
<td>Orissa</td>
<td>66</td>
<td>-8.8</td>
</tr>
<tr>
<td>UP</td>
<td>11.9</td>
<td>-293.3</td>
</tr>
<tr>
<td>West Bengal</td>
<td>384.8</td>
<td>-26.0</td>
</tr>
<tr>
<td>East – change</td>
<td>-60.5</td>
<td>-10</td>
</tr>
<tr>
<td>% change</td>
<td>-0.2%</td>
<td>-0.1%</td>
</tr>
</tbody>
</table>

A significant shift towards high value crops (2000-2007)

Source: Agriculture Statistics, Ministry of Agriculture; IMA analysis
10. Contract farming can raise profitability

- India’s experience with contract farming has been universally positive in raising profitability – this is being helped by the emergence of organised food retail.
- However, there are issues around reneging of contracts and political opposition that need to be addressed.

Gherkins in Karnataka (profit/acre)

- Non contract: 3,930
- Contract farming: 5,720

Spinach in Delhi (profit/tonne)

- Contract farmers: 1,762
- Non contract farmers: 1,169

Source: Agricultural Economics Research Review, July-December 2006; Centad, India’s Agricultural challenge; IMA analysis; PAFC: Punjab Agro Finance Corporation
11. Contrary to popular belief, ‘cereal’ sufficiency has been achieved

The demand-supply gap is no longer foreseen in cereals but in pulses and cash crops – a fact that is belatedly being recognised by Government policies.

Source: Demand-Supply Trends and Projections of Food in India, ICRIER, 2008
But changing consumption patterns will put supply pressures on other crops

A clear change in consumption pattern is visible in both urban and rural India – declining/stagnant consumption of cereals accompanied by increasing consumption of higher value foods – milk, meat, vegetables and fruits.

Increasing incomes will drive greater consumption of high value food and cash crops – this is creating economic opportunities for farmers and businesses that did not exist in the aftermath of the Green Revolution.

Source: Planning Commission Steering Committee for Agriculture; IMA analysis
12. Bio-fuels is one such ‘opportunity’

- Indian bio-diesel acreage (Jatropha) could rise to 5.6 mn hectares by 2012 and 13 mn ha by 2018
 - Of this, the Government expects up to 3 mn ha to come from currently cultivated area (i.e. diversion from one crop to another)
 - The balance is expected to come from rejuvenation of fallow land and diversion from non-agricultural sources

Acreage for bio-fuels: Government estimates

<table>
<thead>
<tr>
<th>Year</th>
<th>Diesel demand (MMT)</th>
<th>Bio-diesel @5% (MMT)</th>
<th>Acreage (Mn ha)</th>
<th>Bio-diesel @10% (MMT)</th>
<th>Acreage (Mn ha)</th>
<th>Bio-diesel @20% (MMT)</th>
<th>Acreage (Mn ha)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2001-02</td>
<td>39.81</td>
<td>1.99</td>
<td>NA</td>
<td>3.98</td>
<td>NA</td>
<td>7.96</td>
<td>NA</td>
</tr>
<tr>
<td>2006-07</td>
<td>52.33</td>
<td>2.62</td>
<td>2.19</td>
<td>5.23</td>
<td>4.38</td>
<td>10.47</td>
<td>8.76</td>
</tr>
<tr>
<td>2011-12</td>
<td>66.90</td>
<td>3.35</td>
<td>2.79</td>
<td>6.69</td>
<td>5.58</td>
<td>13.38</td>
<td>11.19</td>
</tr>
</tbody>
</table>

Source: Planning Commission; Committee on Bio-Fuels
13. The Government’s efforts towards pulses and non-food crops are fragmented

- In response to changing demand-supply dynamics, the Government has increased focus on crop-specific schemes: National Food Security Mission; National Horticulture Mission; the Integrated Scheme of Oilseeds, Pulses and Maize
- However, each of these suffers from a variety of inefficiencies
- As yet, there is no credible strategy to address these i.e. we should expect ‘more of the same’ as far as Government-sponsored action and implementation is concerned

NHM* allocations (Rs crores) aren't fully utilised

<table>
<thead>
<tr>
<th>Year</th>
<th>Budgetary estimates</th>
<th>Actual expenditure</th>
</tr>
</thead>
<tbody>
<tr>
<td>2005-06</td>
<td>1405</td>
<td>1202.9</td>
</tr>
<tr>
<td>2006-07</td>
<td>1951</td>
<td>1916.4</td>
</tr>
<tr>
<td>2007-08</td>
<td>2222.4</td>
<td>2176</td>
</tr>
<tr>
<td>2008-09</td>
<td>1195.78</td>
<td></td>
</tr>
</tbody>
</table>

Targets and achievement in pulse production

<table>
<thead>
<tr>
<th>Year</th>
<th>Production target ('000 tonnes)</th>
<th>Actual production</th>
<th>% deviation from target</th>
</tr>
</thead>
<tbody>
<tr>
<td>2002-03</td>
<td>14,400</td>
<td>11,125</td>
<td>-22.7</td>
</tr>
<tr>
<td>2003-04</td>
<td>14,800</td>
<td>14,905</td>
<td>+0.7</td>
</tr>
<tr>
<td>2004-05</td>
<td>15,300</td>
<td>13,130</td>
<td>-14.2</td>
</tr>
<tr>
<td>2005-06</td>
<td>15,700</td>
<td>13,390</td>
<td>-14.7</td>
</tr>
<tr>
<td>2006-07</td>
<td>16,200</td>
<td>14,200</td>
<td>-12.3</td>
</tr>
</tbody>
</table>

Source: Ministry of Agriculture; Directorate of Pulses Development
In fact, Government spending is inadequate and ineffective across the board

- A Rupee spent on capital formation is 3-4 times as effective as a Rupee spent on subsidies – but politics prevents reform
- Agricultural investment as a % of GDP has been falling; instead greater expenditure is being incurred on subsidies
- Although allocations for research and extension programmes have been increasing, there are inefficiencies that prevent funds from being fully utilised

Source: RBI; Parliamentary Standing Committee on Agriculture; Steering Committee for the XI Plan; IMA analysis
14. Meanwhile, environmental degradation is emerging as a major threat

- Soil degradation is approaching worrisome levels in most parts of India; 50% of total land and 66% of cultivated land degraded – the highest amongst Asia Pacific countries
- Water scarcity projected as the single biggest factor for civil and social strife in the next decade

Source: FAO; Sara J Scherr; IFPRI, Ramesh Chand, Centad
As are falling water tables

Future sources of irrigation will depend increasingly on groundwater...

...but the level of groundwater is already in a critical condition in most states

Increasing dependence on groundwater irrigation can be a potential source of failure of future projects, due to high levels of groundwater depletion

Source: Ministry of Water Resources; Planning Commission, FAO; IFPRI, Centad
This will have serious long term implications

Climate change impact assessment

- The impact of climate change on the environment is visibly obvious (IPCC, Working Group II, 2007)
- India’s overall crop yields could fall by 30% by 2050 according to the IPCC; other impact: coastal flooding, greater drought incidence, reduced water availability
- Other studies suggest vulnerability of 5-15% in rice yields and 25-42% in wheat yields (Parikh and Kumar, 2002); response times of mitigation measures are 5-15 years

Climate change presents a ‘real’ and exogenous force that will work against productivity improvement measures locally

Source: IPCC; Parikh and Kumar, 2002; others
IV. Summary and drawings
In Summary: negative or stagnant trends

• The lack of new technologies after the effects of the Green Revolution have worn off, is becoming worrisome; very few promising seeds have been commercialised and most other innovations are still languishing due to poor extension or lack of investment

• Corrective action regarding fertiliser subsidy, inadequate seed production, market rigidities and other market-distorting policies is desperately needed – but as yet, political commitment is not visible

• Achievement of irrigation potential unlikely to surpass 50% of targeted acreage, given the large backlog of previous projects to be completed and the fact that no tangible change has been made in the strategy – hence, monsoon dependence and erratic growth will continue to plague the sector

• In general, the effectiveness of Government measures/schemes will remain erratic across the country – private participation can help but this will happen very slowly, at best (fundamental enabling measures such as land reforms, corporatisation, taxation of agriculture do not look likely at this time)

• Fundamental degradation in environmental parameters and lack of Good Agricultural Practices (GAP) are not likely to be addressed in the foreseeable future – this will create a serious long term threat

Source: IMA research
In Summary: positive trends

- Declining per capita cereal intake and rising F&V and other cash crop consumption will continue on the back of rising incomes and awareness – this will be helped by food retailing, bio-energy demand and create new opportunities for farmers and businesses.
- A consistent movement of labour away from agricultural occupations will lead to rising wages; this should prompt greater mechanisation and productivity-enhancing measures.
- The provision of greater finance to agriculture will continue to increase – through bank lending, the Kissan credit card scheme, and the possible introduction of trade-able deficits (for directed bank lending) as well as private-sector micro-finance programmes – this will raise farmer incomes and hence, rural demand.
- There is a shift in Government priority from an overwhelming emphasis on food-grains and cereals to a more broad-based focus on profitable and sustainable farming – this will have cascading benefits for the entire agriculture-to-food value chain in the long term.
- Individual states are taking the lead on issues like private participation, land reforms and other measures – this can create opportunities in the absence of a concerted push from the Centre.

Source: IMA research
Implications for business: general thoughts

• Indian agriculture presents several opportunities:
 – Contract farming
 – New crop technologies – seeds, fertiliser, crop protection
 – Trading and procurement
 – R&D
 – Retail and distribution

• However, most opportunities are at nascent stages – this presents both an inherent advantage and a risk that must be explicitly realised

• A granular analysis is critical before any business or investment decision is made – generalisations are hazardous in the context of Indian agriculture

• Given the complexity of inter-relationships, it is important to be in sync with the broader economic, political and market context, before initiating a new business/activity